Bayesian Network Structure Learning from Attribute Uncertain Data
نویسندگان
چکیده
In recent years there has been a growing interest in Bayesian Network learning from uncertain data. While many researchers focus on Bayesian Network learning from data with tuple uncertainty, Bayesian Network structure learning from data with attribute uncertainty gets little attention. In this paper we make a clear definition of attribute uncertain data and Bayesian Network Learning problem from such data. We propose a structure learning method named DTAU based on information theory. The algorithm assumes that the structure of a Bayesian network is a tree. It avoids enumerating all possible worlds. The dependency tree is computed with polynomial time complexity. We conduct experiments to demonstrate the effectiveness and efficiency of our method. The experiments show the clustering results on uncertain dataset by our dependency tree are acceptable.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملHidden Naive Bayes
The conditional independence assumption of naive Bayes essentially ignores attribute dependencies and is often violated. On the other hand, although a Bayesian network can represent arbitrary attribute dependencies, learning an optimal Bayesian network from data is intractable. The main reason is that learning the optimal structure of a Bayesian network is extremely time consuming. Thus, a Baye...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کامل